Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Pathol ; 31(1): 33-44, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32633004

RESUMO

The molecular biology of ependymomas is not well understood and this is particularly true for ependymoma relapses. We aimed at finding out if and to which extent, relapses differ from their corresponding primary tumors on the morphological, chromosomal and epigenetic level. We investigated 24 matched ependymoma primary and relapsed tumor samples and, as a first step, compared cell density, necrosis, vessel proliferation, Ki67 proliferative index, trimethylation at H3K27 and expression of CXorf67. For the investigation of global methylation profiles, we used public data in order to analyze copy number variation profiles, differential methylation, methylation status and fractions of hypo- and hypermethylated CpGs in different epigenomic substructures. Morphologically, we found a significant increase with relapse in cell density and proliferation. H3K27 trimethylation and CXorf67 expression remained stable between primary and relapse tumor samples, and the analysis of DNA methylation profiles neither revealed significant differences in copy number variations nor differentially methylated regions. Significant differences in the methylation status were found for CpG islands, but also in N Shelves or S Shelves, depending on the molecular subgroup. The fraction of probes changing their methylation in the epigenomic substructures appeared subgroup-specific. Most changes occur in CpG islands, for which relapsed tumors demonstrate higher methylation values than primary tumors. The morphological differences reflect increased aggressiveness upon ependymoma relapse, but, despite slight changes, this observation does not appear to be sufficiently explained by epigenetic changes.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Ependimoma/genética , Ependimoma/patologia , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Adolescente , Adulto , Criança , Epigenoma , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Adulto Jovem
2.
Cells ; 9(7)2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630841

RESUMO

Ischemic stroke belongs to the leading causes of mortality and disability worldwide. Although treatments for the acute phase of stroke are available, not all patients are eligible. There is a need to search for therapeutic options to promote neurological recovery after stroke. The cellular prion protein (PrPC) has been consistently linked to a neuroprotective role after ischemic damage: it is upregulated in the penumbra area following stroke in humans, and animal models of stroke have shown that lack of PrPC aggravates the ischemic damage and lessens the functional outcome. Mechanistically, these effects can be linked to numerous functions attributed to PrPC: (1) as a signaling partner of the PI3K/Akt and MAPK pathways, (2) as a regulator of glutamate receptors, and (3) promoting stem cell homing mechanisms, leading to angio- and neurogenesis. PrPC can be cleaved at different sites and the proteolytic fragments can account for the manifold functions. Moreover, PrPC is present on extracellular vesicles (EVs), released membrane particles originating from all types of cells that have drawn attention as potential therapeutic tools in stroke and many other diseases. Thus, identification of the many mechanisms underlying PrPC-induced neuroprotection will not only provide further understanding of the physiological functions of PrPC but also new ideas for possible treatment options after ischemic stroke.


Assuntos
AVC Isquêmico/metabolismo , Proteínas Priônicas/metabolismo , Animais , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Encéfalo/fisiologia , Humanos , Neovascularização Fisiológica , Neurogênese , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...